Detecting sequences of system states in temporal networks

…continuing my discussion of ‘complexity’ methods – this looks like a truly fascinating attempt to infer something essential or internal to a system from description of observable characteristics, using hard maths.
There’s something about a focus on the material here, and perhaps an equivalent to informed brute-force decryption attacks?

Complexity Digest

Many time-evolving systems in nature, society and technology leave traces of the interactions within them. These interactions form temporal networks that reflect the states of the systems. In this work, we pursue a coarse-grained description of these systems by proposing a method to assign discrete states to the systems and inferring the sequence of such states from the data. Such states could, for example, correspond to a mental state (as inferred from neuroimaging data) or the operational state of an organization (as inferred by interpersonal communication). Our method combines a graph distance measure and hierarchical clustering. Using several empirical data sets of social temporal networks, we show that our method is capable of inferring the system’s states such as distinct activities in a school and a weekday state as opposed to a weekend state. We expect the methods to be equally useful in other settings such as temporally varying protein…

View original post 34 more words