The physics of governance networks: critical transitions in contagion dynamics on multilayer adaptive networks with application to the sustainable use of renewable resources

Complexity Digest

Adaptive networks are a versatile approach to model phenomena such as contagion and spreading dynamics, critical transitions and structure formation that emerge from the dynamic coevolution of complex network structure and node states. Here, we study critical transitions in contagion dynamics on multilayer adaptive networks with dynamic node states and present an application to the governance of sustainable resource use. We focus on a three layer adaptive network model, where a polycentric governance network interacts with a social network of resource users which in turn interacts with an ecological network of renewable resources. We uncover that sustainability is favored for slow interaction timescales, large homophilic network adaptation rate (as long it is below the fragmentation threshold) and high taxation rates. Interestingly, we also observe a trade-off between an eco-dictatorship (reduced model with a single governance actor that always taxes unsustainable resource use) and the polycentric governance network of multiple actors…

View original post 134 more words