Living Systems | James Grier Miller | 1978

The 1100+ page Living Systems book published in 1978 by the founder of Behavioral Science in 1956, James Grier Miller, became available as a softcopy on the Internet Archive in May 2017.

What is a living system and what does it do? Many scientists coming from diverse scientific backgrounds, when engaged in the search for general principles to integrate our understanding of the phenomena of life, have placed major emphasis on the notion of living systems composed of interrelated units. The various “systems theories” differ greatly in their concepts and definitions of basic terms. Their common goal is to organize the findings in some or all of the sciences of life and behavior into a single conceptual structure.

1. One general theory of living systems

The general living systems theory which this book presents is a conceptual system concerned primarily with concrete systems (see page 17) which exist in space-time. Complex structures which carry out living processes I believe can be identified at seven hierarchical levels (see page 25) — cell, organ, organism, group, organization, society, and supranational system. My central thesis is that systems at all these levels are open systems composed of subsystems which process inputs, throughputs, and outputs of various forms of matter, energy, and information. I identify 19 critical subsystems (see page 32 and Table 1-1) whose processes are essential for life, some of which process matter or energy, some of which process information, and some of which process all three. Together they make up a living system, as shown in Fig. 1-1. In this table the line under the word “Reproducer” separates this subsystem from the others because that subsys- tem differs from all the others by being critical to the species or type of system even though it is not essen- tial to the individual. Living systems often continue to exist even though they are not able to reproduce. Subsystems in different columns which appear oppo- site each other have processes with important similar- ities — for instance, the processes carried out by the ingestor for matter and energy are comparable to those carried out by the input transducer for information. In general the sequence of transmissions in living systems is from inputs at the top of Table 1-1 to outputs at the bottom, but there are exceptions. [p. 1]

A generalized living system interacting and intercommunicating with two others in its environment

Fig. 1-1 A generalized living system interacting and intercommunicating with two others in its environment.

Subsystems which process both matter-energy and information: Reproducer (Re); Boundary (Bo).

Subsystems which process matter-energy: Ingestor (IN); Distributor (DI); Converter (CO); Producer (PR); Matter-energy storage (MS); Extruder (EX); Motor (MO); Supporter (SU).

Subsystems which process information: Input transducer (IT); Internal transducer (IN); Channel and net (CN); Decoder (DC); Associator (AS); Memory (ME); Decider (DE); Encoder (EN); Output transducer (OT).  [p. 2]

Systems at each of the seven levels, I maintain, have the same 19 critical subsystems. The structure and processes of a given subsystem are more complex at a more advanced level than at the less advanced ones. This is explained by what I call the evolutionary principle of “shred-out,” a sort of division of labor (see Fig. 1-2). Cells have the 19 critical subsystems. When mutations occurred in the original cells, the mutant could continue to exist only if it could carry out all the essential processes of life of the 19 subsystems; otherwise it would be eliminated by natural selection. The general direction of evolution is toward greater complexity. As more complex cells evolved, they had more complex subsystems, but still the same 19 basic pro- cesses. Similarly as cells evolved into more complex systems at advanced levels — organs, organisms, and so on — their subsystems shredded out into increasingly complicated units carrying out more complicated and often more effective processes. If at any single point in the entire evolutionary sequence any one of the 19 subsystem processes had ceased, the system would not have endured. That explains why the same 19 subsystems are found at each level from cell to supra- system. And it explains why it is possible to discover, observe, and measure cross-level formal identities (see page 17). [pp. 1,4]

Shred out
Fig. 1-2 Shred-out. The generalized living system (see Fig. 1-1) is here shown at each level. The diagram indicates that the 19 subsystems at the level of the cell shred out to form the next more advanced level of system, the organ. This still has the same 19 subsystems, each being more complex. A similar shredding-out occurs to form each of the five more advanced levels — organism, group, organization, society, and supranational system.  [p. 4]

For each subsystem I identify about a dozen variables representing different aspects of its processes. It would be easy to identify more if one wanted an exhaustive list. Each of these variables can be measured at each of the levels, and the sorts of variation discovered can be compared across the levels. The interactions between two or more variables in a single subsystem or in multiple ones can also be observed, measured, and compared across the levels. This is how cross-level formal identities, basic to a general theory of living systems, can be examined (see page 27).

This book is an effort to integrate all the social, biological, and physical sciences that apply to structure or process at any of the seven levels. Physiology, biochemistry, genetics, pharmacology, medicine, economics, political science, anthropology, sociology, and psychology are all almost entirely relevant. Physical science and engineering also contribute. Logic, mathematics, and statistics yield methods, models, and simulations, including some involving the relatively new approaches of cybernetics and information theory. [p. 4]

References

Miller, James Grier. 1978. Living Systems. McGraw-Hill. https://archive.org/details/LivingSystems.

#james-grier-miller, #living-systems

Behavioral Science, A New Journal | 1956 | James Grier Miller

The founding of Behavioral Science in 1956, with James Grier MIller as the founding editor, was sponsored through research into mental health.  This interdisciplinary approach was a precursor to the organization now labelled as the International Society for the Systems Sciences.

The remarkable growth of interdisciplinary interest in behavioral science duirng the last decade is the fundamental justification for this new periodical. [….]

Man’s most baffling enigma remains, as it has always been, himself. He has been unable to fathom with any precision those laws of human nature which can produce social inequality, industrial strife, marital disharmony, juvenile delinquency, mental illness, war, and other widespread miseries. [p. 1]

Many different approaches have been used in the study of behavior — mathematical biology, biochemistry, physiology, genetics, medicine, psychiatry, psychology, sociology, economics, politics, anthropology, history philosophy, and others. Though the term “interdisciplinary” is widely current, and for a long time efforts a t collaboration have been made, true unification of these fields still remains an unattained goal. And within each are various schools. Their approaches and skills are specific, but the problems are general. Can the scientific method solve the larger, more pervasive questions about man as well as the smaller, more particular ones? Is the tool with which man has won his victories over the physical world applicable to uncovering the laws which govern man’s conduct, the deepest causes of our strife and our harmony? If the fragments of multiple sciences were brought together in a unitary behavioral science and all the separate skills focused on the study of human behavior, perhaps the time required to find answers to these questions could be reduced. It is possible that inadequacies in the present studies of man could thus be avoided. The uniformities among disciplines could be recognized; better communication among them established ; generality of findings magnified; additional benefits derived from comparing theories in diverse fields, explaining both similarities and differences; and the validity and applicability of empirical work increased by planning individual studies as components of an explicit mosaic of research strategy. [pp. 1-2]

About 1949 a group of faculty members at the University of Chicago, some of whom have now moved to the University of Michigan, began to consider whether a sufficient body of facts exists to justify developing empirically testable general theories of behavior. This group used the term “behavioral science” to cover the diverse areas of their interests, primarily because its neutral character made it acceptable to both social and biological scientists.

Most of the participants were at first skeptical that our comprehension of these different areas had advanced sufficiently to justify such activity. The first meetings engendered a general hopelessness as the diversity of languages and the multitude of approaches to the study of man became increasingly apparent. But then we began to see among us certain commonalties of thinking, despite their many linguistic disguises, and this agree- ment gave us hope that our efforts were not unrealistic.

Members of this group have met intensively for several years as the Committee on Behavioral Science at the Universit,y of Chicago. Some are continuing this activity at Chicago; others went to staff the new Mental Health Research Institute, established in August, 1955, at the University of Michigan; and there they were joined by still others. The Regents of the University and the Legislature of the State of Michigan established this Institute on a permanent basis. [p. 2]

The aim is to conduct basic research; the expectation, that from such research will flow contributions, particularly in the field of mental health and disease, that will help to solve the many problems of human relations. Our understanding of mental illness is primitive compared with our knowledge of other forms of disease, partly because of the complexity of the problems and partly because research efforts have not been commensurate with their magnitude. Public interest in these issues is growing rapidly, as evidenced by the new or greatly increased appropriations for investigation by state legislatures and the Congress, and by additional support from foundations. [pp. 2-3]

In this area of behavioral science there are numerous schools with conflicting beliefs. No one as yet has seen how the insights of psychodynamics, the projective techniques of psychology, the facts of neuropathology, the discoveries of endocrinology, biochernistry, and neurophysiology , and the concepts of social science can be merged into a single framework for explaining the biological and psychiatric and social phenomena of mental illness. There is need now for renewed and exhaustive examination of these separate matters, and for creative attempts to integrate them, to test them empirically, and to apply them.

Such studies should be carried out at various levels. Our present thinking-which may alter with time-is that a general theory will deal with structural and behavioral properties of systems. The diversity of systems is great. The molecule, the cell, the organ, the individual, the group, the society are all examples of systems. Besides differing in the level of organization, systems differ in many other crucial respects. They may he living, nonliving, or mixed; material or conceptual; and so forth.

The strategy of the Michigan Institute’s work will emphasize identification of general principles, which extend across various levels of systems. We shall attempt to clarify and make precise both the general principles and the particular differences; and to test — in laboratories and in clinics, by group studies and by social surveys, with whatever methods prove appropriate — the validity and usefulness of such analysis. Research techniques will probably be derived from several areas, including the physiological, psychological, economic, political, social and cultural.

Although the Institute expects to pay particular attention to the similarities and dissimilarities among different behaving systems, this is only one of many legitimate approaches to behavior theory. Behavioral Science, as a journal with wider scope than any single Institute, will welcome articles which are constructively critical of this orientation or which advance other alternative strategies, as well as articles which present relevant empirical studies. [p. 3]

This is the official publication of the Mental Health Research Institute at the University of Michigan. As such it wil contain edited records of roundtable discussions on theory and reports of other activities involving the Institute. It is hoped that Ann Arbor can in the summer offer its facilities as a meeting center for scientists, many from other institutions, who are concerned with behavior theory or mental health or with related experimental and clinical work. Reports of such conferences and workshops will also be included in this journal. [pp. 3-4]

Other centers are carrying out closely related work. The Committee on Behavioral Science at Chicago, for example, maintains its original interests, and other universities are supporting or planning comparable programs. A particularly significant focus of activity is the Center for Advanced Study in the Behavioral Sciences established by the Ford Foundation and located at Stanford, California. This journal will welcome contributions from scholars a t these centers or elsewhere. It should serve as one channel of communication for members of the ever-increasing group engaged in advancing the sciences of man.

We are aware of no present journal with a primary policy of making its pages available to representatives of any field-the humanities, the social sciences, the biological and medical sciences, and the physical sciences — to discuss theory concerning behavior, and empirical studies clearly oriented to such theory. It has been rare for physicists, psychiatrists, political scientists, and historians to publish in, or even read, the same journal. We shall strive to achieve this end.

[….]

Franz Alexander
Alex Bavelas
David Easton
Ralph W. Gerard
Clyde Kluckhohn
Donald G. Marquis
Jacob Marschak
Anatol Rapoport
Ralph W. Tyler
Raymond W. Waggoner

Some this history is more fully explicated in the 2010 book The Science of Synthesis: Exploring the Social Implications of General Systems Theory, by Debora Hammond.

References

Alexander, Franz, Alex Bavelas, Ralph W. Gerard, Donald G. Marquis, Jacob Marschak, James G. Miller, Anatol Rapoport, Ralph W. Tyler, and Raymond Waggoner. 1956. “Editorial: Behavioral Science, A New Journal.” Behavioral Science 1 (1): 1–5. https://doi.org/10.1002/bs.3830010102.

Hammond, Debora. 2003. The Science of Synthesis: Exploring the Social Implications of General Systems Theory. University Press of Colorado. http://books.google.com/books?id=skSMuZycpTwC , or at a library near you.

Behavioral Science, A New Journal

 

 

 

#behavioral-science, #james-grier-miller